Knowledge Transfer Strategies for Vector Evaluated Particle Swarm Optimization
نویسندگان
چکیده
Vector evaluated particle swarm optimization (VEPSO) is a multi-swarm variant of the traditional particle swarm optimization (PSO) algorithm applied to multi-objective problems (MOPs). Each subobjective is allocated a single sub-swarm and knowledge transfer strategies (KTSs) are used to pass information between swarms. The original VEPSO used a ring KTS, and while VEPSO has shown to be successful in solving MOPs, other algorithms have been shown to produce better results. One reason for VEPSO to perform worse than other algorithms may be due to the inefficiency of the KTS used in the original VEPSO. This paper investigates new KTSs for VEPSO in order to improve its performance. The results indicated that a hybrid strategy using parentcentric crossover (PCX) on global best solutions generally lead to a higher hypervolume while using PCX on archive solutions generally lead to a better distributed set of solutions.
منابع مشابه
Economic Dispatch of Thermal Units with Valve-point Effect using Vector Coevolving Particle Swarm Optimization Algorithm
Abstract: This paper is intended to reduce the cost of producing fuel from thermal power plants using the problem of economic distribution. This means that in order to determine the share of each unit, considering the amount of consumption and restrictions, including the ones that can be applied to the rate of increase, the prohibited operating areas and the barrier of the vapor barrier, the pr...
متن کاملMultiobjective Optimization Using Parallel Vector Evaluated Particle Swarm Optimization
This paper studies a parallel version of the Vector Evaluated Particle Swarm Optimization (VEPSO) method for multiobjective problems. Experiments on well known and widely used test problems are performed, aiming at investigating both the efficiency of VEPSO as well as the advantages of the parallel implementation. The obtained results are compared with the corresponding results of the Vector Ev...
متن کاملPREDICTION OF EARTHQUAKE INDUCED DISPLACEMENTS OF SLOPES USING HYBRID SUPPORT VECTOR REGRESSION WITH PARTICLE SWARM OPTIMIZATION
Displacements induced by earthquake can be very large and result in severe damage to earth and earth supported structures including embankment dams, road embankments, excavations and retaining walls. It is important, therefore, to be able to predict such displacements. In this paper, a new approach to prediction of earthquake induced displacements of slopes (EIDS) using hybrid support vector re...
متن کاملPredicting the Young\'s Modulus and Uniaxial Compressive Strength of a typical limestone using the Principal Component Regression and Particle Swarm Optimization
In geotechnical engineering, rock mechanics and engineering geology, depending on the project design, uniaxial strength and static Youngchr('39')s modulus of rocks are of vital importance. The direct determination of the aforementioned parameters in the laboratory, however, requires intact and high-quality cores and preparation of their specimens have some limitations. Moreover, performing thes...
متن کاملModeling heat transfer of non-Newtonian nanofluids using hybrid ANN-Metaheuristic optimization algorithm
An optimal artificial neural network (ANN) has been developed to predict the Nusselt number of non-Newtonian nanofluids. The resulting ANN is a multi-layer perceptron with two hidden layers consisting of six and nine neurons, respectively. The tangent sigmoid transfer function is the best for both hidden layers and the linear transfer function is the best transfer function for the output layer....
متن کامل